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LETTER TO THE EDITOR 

Random-site spin-glass models 

D Grensing and R Kuhn 
Institut fur Theoretische Physik und Sternwarte, Universitat Kiel, D-2300 Kiel 1, West 
Germany 

Received 29 August 1986 

Abstract. A simple general method i s  presented for solving mean-field spin-glass models 
where the bond randomness i s  expressible in terms of an underlying site randomness. Both 
separable and non-separable models can be solved. 

The mean-field models of spin glasses discussed in the literature can be divided into 
two classes, the first class consisting of the true random-bond models where the 
couplings between interacting spins are taken to be independent random variables 
(Sherrington and Kirkpatrick 1975, Derrida 1981), and the second class containing 
those models where the bond randomness is expressible in terms of some underlying 
hidden site randomness (e.g. Luttinger 1976, van Hemmen 1982). The bond randomness 
in models of the second class is in general not uncorrelated, even if the underlying 
site randomness is. It has been pointed out by Benamira et a1 (1985) that this feature 
retains an important physical aspect of true spin glasses, viz that they are random with 
respect to the positions of magnetic impurities. 

Known models in the 'random-site class' share the important feature that the 
random part of the interaction is a bilinear function of the underlying site randomness, 
and hence can quite generally be expressed as (see Benamira er a1 1985) 

Jij = N - ' ( 5 , ,  55,) (1) 

where the 5 are stochastic vectors in Rp, J a real symmetric p x p matrix and N denotes 
the number of spins in the system. Equation (1) includes, for instance, the models of 
Mattis (1976), Luttinger (1976) and van Hemmen (1982) and their generalisations 
introduced by Provost and Vallee (1983). While these so-called separable models are 
capable of reproducing certain thermodynamic properties of the spin-glass phase, such 
as the plateau in the DC susceptibility (van Hemmen er a1 1983), they invariably lack 
a major feature of spin glasses, namely the existence of a large number of metastable 
low-temperature phases (Choy and Sherrington 1984). In a recent paper, however, 
Benamira et a1 (1985) showed how this deficiency may be overcome in the framework 
of separable models, but only at the cost of introducing an infinite number ( p + w )  
of random variables per lattice site. 

In this letter we take a different approach to the solution of mean-field spin-glass 
models in the random-site class. Utilising discrete probability distributions, we analyse 
and solve spin-glass models of a novel type, where the random part of the interaction 
is given by 

Jij = ( J / N ) f ( t i ;  5 j ) .  (2)  
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As before the f are taken to be stochastic vectors in R p  with some common distribution, 
but f(6; 6’) is now an arbitrary real symmetric function and no longer needs to be a 
bilinear form. 

Our method of solution is rather elementary and requires no replicas. It is based 
on the observation that every Hamiltonian of the random-site class 

with Jq given by equation ( 2 ) ,  can be expressed as a quadratic form of magnetisations 
of certain sublattices which are of macroscopic size, if the probability distributions of 
the are suitably chosen. 

To be specific, we assume the components of the p-dimensional vectors Si in 
equations (1) and ( 2 )  to be independent random variables drawn from the set A,, = 
{ a , ,  a,, . . . , a,} with uniform probability. The generalisation to non-uniform distribu- 
tions is trivial, as indicated below. The elements of A, must, of course, be disposed 
of in a way which depends on the desired probability distribution for the Jll .  

Every quenched configuration of the random vectors fl leads to a partition of the 
lattice flN into n p  disjoint sublattices and the Hamiltonian, therefore, depends on a 
given configuration { f i }  only through this partitioning, so that the sum over all spin 
configurations can be performed in an essentially trivial way. Indeed, given p and A,,, 
the f can only be drawn from a finite set A of n p  different vectors. Introducing a 
single index y to enumerate the n p  vectors a, in A, we find that the sublattices 

fly = { i E f lN ; f i  = a,} a, E A (4) 

are disjoint and together make up the whole lattice. If we introduce n p  corresponding 
block spins or sublattice magnetisations 

( 5 )  

the Hamiltonian takes a particularly compact form in terms of the M y :  
n p  n p  

-PHN = K / ( 2 N )  V, , ,M,M,~+ H M y .  
YY’ Y 

Here we have defined 

V,,, = CY +f( a,; a,,) (7)  

K = P J  H = p h  o = J o / J  (8) 

and 

and have omitted irrelevant terms of order unity, which do not contribute to the free 
energy density in the thermodynamic limit. 

Since V is a symmetric matrix, we can reduce it to a diagonal form by an orthogonal 
transformation 

D = QTVQ D,,, = A,S,,, (9) 
so that 

with 
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The primed summation in equation ( 10) indicates that non-contributing terms with 
A, = 0 have been omitted. To evaluate the partition function 

Z N  = Trf,) exp[-PHN({M,})l (12) 
we use the Hubbard-Stratonovich transformation (Hubbard 1959) and obtain 

Z N ( { w y } )  = n’ {2xKlA,l/N)-”* , 

, Y 

x n’dt ,  exp[ - N (  1 / (2K)  E’ f ’ , / l A , l - X  w ,  ln(2 cosh a,) 
-m P 

where 

ay = H +E’ Qy,s,t, s’, = sgn(A,) , 
and where 

wy = Ifi,l/ N (15 )  
denotes the fraction of lattice sites which belong to the sublattice 0,. According to 
the strong law of large numbers (Rinyi 1971), the quantities w y  converge with probabil- 
ity one to their mean value n-” in the thermodynamic limit. In the case of non-uniform 
probability distributions the w y  would simply converge to some p y  according to their 
probability. 

The integrals in equation (13 )  are evaluated by the method of steepest descents, 
and the thermodynamic limit of the quenched free energy density is found to be 

(16) 

The maximising parameters f, are among the solutions of the following set of transcen- 
dental equations: 

r,/(KlA,l) = n-”s, 

and again we note that only those r, are involved which correspond to non-zero 
eigenvalues A,. 

It is easy to show that the t, as solutions of equations (17) are linear combinations 
of sublattice magnetisation densities defined by 

my = tanh ( U  H + E’ Qyvsvt . ) .  

Since sublattice magnetisations are real quantities, it follows from equations (17) that 
those ?,, which correspond to negative eigenvalues, hence having s: = -1 ,  must be 
purely imaginary. It is therefore convenient to rewrite the fixed point equations (17) 
in terms of the real parameters 

Y ,  = S,t ,  

which leads to 
n P  / \ 

y =  I 
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In terms of the solution {y&} of the above equations which corresponds to the maximum 
in equation (16), the free energy per spin is simply given by 

- (2K)- ‘x’y i /A, .  

in equation (16), the free energy per spin is simply given by 
r / \ l  

Whenever equation (20) allow several solutions, one still has, of course, to decide 
which of the phases (solutions) minimises the free energy, and hence is absolutely 
stable, and which of them must be regarded as metastable (corresponding to local 
minima of the free energy) or even unstable. 

The most important consequence of the above results is that the number of order 
parameters necessary to describe the system is equal to the number of non-zero 
eigenvalues of the matrix V. Since the dimension of V is n p ,  where n denotes the 
number of elements of A,,, one would expect the rank of V to be, to a large extent, at 
our disposal and that it would ultimately increase with n. There is in this respect, 
however, a fundamental difference between separable and non-separable models in 
the random-site class. While for non-separable models the rank of V does indeed 
increase with n, this proves not to be the case for separable models. This is easily seen 
by noting that for separable models (cf equation (1)) the matrix V is a sum of p rank-1 
dyadic matrices so that its rank is at the most p, irrespective of the dimension of V, 
and hence independent of the probability distribution for the 1,. This is, of course, 
related to the fact that separable models can be solved in terms of their p natural order 
parameters (Provost and Vallie 1983). 

It should perhaps be noted that it is easy and sometimes advantageous to eliminate 
the diagonalising matrix Q from the final results (equations (20) and (21)) so as to 
formulate the free energy and the associated set of fixed point equations in terms of 
the sublattice magnetisations my and the ‘interaction matrix’ V. The number of fixed 
point equations, however, will then increase from rank(V) to dim(V). 

In conclusion, we have presented a simple method for solving mean-field spin-glass 
models in the random-site class. The methods available for solving random-site class 
models are invariably restricted to the separable models, since they utilise, in one way 
or another, the fact that the random part of the interaction is a bilinear function of the 
site randomness, whereas our method is free of such a restriction, requiring nothing 
but bilinearity in the spins. This is ultimately facilitated by the different nature of our 
order parameters, which are sublattice magnetisations or suitable linear combinations 
thereof. As it stands, our method is applicable only to discrete probability distributions. 
Continuous distributions can be handled, but this requires further ingredients and a 
somewhat different approach (van Hemmen et a1 1986). Nevertheless the class of 
exactly soluble models has been considerably extended. 

Thinking of possible applications of the present approach, the strong influence of 
probability distributions in non-separable models may help in adapting spin-glass 
models to experimental facts, such as reentrance phenomena or the correspondence 
known to exist between atomic ordering and the magnetic phase diagram. Details will 
be presented elsewhere (Grensing and Kiihn 1986). Other fields of application include, 
e.g., neural networks with non-linear synapses (van Hemmen and Kiihn 1986). 
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